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As shown by Maniar & Newman in 1997, for a long array of bottom-mounted cylinders in the
open sea, resonant modes occur as “near-trapping” and large diffraction forces are excited on
the cylinders. The mechanism of such a resonant phenomenon was subsequently explained by
the present authors in connection with the Dirichlet trapped modes for an array of cylinders
aligned perpendicular to the walls in a wave channel. This paper examines similar resonant
phenomena for radiation problems. Considered is an array of elastically connected cylinders in
a wave channel. The cylinders are surface-piercing and extend to the sea-bottom. They
constitute an array in a line, and each cylinder is allowed to oscillate only in the direction
parallel to the line. Nonradiating wave modes, which cause only added mass force and no
hydrodynamic damping are demonstrated to exist for an array of cylinders across the wave
channel. Each mode corresponds to a “dry-mode” for the periodic array of elastically connected
cylinders. This result leads to the existence of pure-resonant modes for a periodic array of
elastically connected cylinders across the channel. Trapped modes for the corresponding
diffraction problem are obtained as the limiting case when the stiffness of the springs has an
infinite value. © 2000 Academic Press

1. INTRODUCTION

A TRAPPED MODE IS A RESONANT MODE in which only finite wave energy is trapped around
an object/objects placed in an unbounded domain and no dissipation of wave energy due
to radiation occurs [see Ursell (1951), Callan, Linton & Evans (1991), Evans &
Kuznetsov (1998)]. Mathematically speaking, trapped modes are eigensolutions of the
Laplace operator in an unbounded domain, in which only homogeneous boundary
conditions are applied (that is, no forcing term). At the frequencies at which the
trapped mode exists, uniqueness of the solution for the boundary value problem, in
which inhomogeneous boundary conditions are applied on some boundaries, will be
violated. Searching for trapped modes in many situations is thus a fundamental scientific
problem, because in order to assure uniqueness of the solution for a diffraction/radiation
problem we need to know whether the corresponding homogeneous problem has trapped-
mode solutions or not.
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Besides this scientific interest, trapped modes are significant for offshore engineering
applications because of the “near-trapping phenomenon” discovered by Maniar &
Newman (1997). They have found that for a long array of bottom-mounted cylinders,
resonant modes occur as “near-trapping”, and large diffraction forces are excited on the
cylinders. The mechanism of such a resonant phenomenon has been explained by the
present authors in connection with the Dirichlet trapped modes for an array of cylinders
aligned perpendicular to the walls in a wave channel (Utsunomiya & Eatock Taylor 1998,
1999). The Dirichlet trapped mode, introduced by Maniar & Newman (1997), is a trapped
mode where the Dirichlet boundary condition is applied on the channel walls. Although
such a wave channel is nonphysical, the connection with near-trapping phenomena has
been demonstrated by Maniar & Newman (1997) and by Utsunomiya & Eatock Taylor
(1998, 1999).

Similar effects have been observed in Rayleigh-Bloch waves travelling along an infinite
array of cylinders, and the essential equivalency between the Rayleigh-Bloch waves and the
trapped modes in a wave channel has been demonstrated very recently (Porter & Evans
1999). Near-trapping modes have also been obtained for circular arrays of bottom mounted
cylinders by Evans & Porter (1997).

On the other hand, the trapping phenomenon also affects radiation forces. Newman
(1998) has examined the added mass and hydrodynamic damping of the “Mclver toroid”,
and a large fluctuation of added mass over a relatively broad range of frequencies has been
demonstrated. A similar observation has been made before by Linton & Evans (1992) for
a vertical cylinder placed in a channel, although they did not place great emphasis on this
phenomenon. Similar behaviour should also be obtained for an array of cylinders at the
trapped-mode frequencies; that is, the radiation forces will also indicate singular behaviour,
as well as the diffraction forces. This is the motivation for our examining the radiation
problem for an array of cylinders.

We consider in this paper an array of elastically connected cylinders in a wave
channel. The cylinders are surface-piercing and extend to the sea-bottom. They constitute
an array in a line, and each cylinder is allowed to oscillate only in the direction parallel to
the line.

For the single-cylinder case, the cut-off wavenumber (under which no radiation of
wave energy to the ends of the channel is possible) is known to be k = ©/2d, where d is
the half-width of the channel. In the frequency range below the cut-off, the velocity potential
becomes real-valued, and thus the resulting radiation force acting on the cylinder can
be represented only by an added mass force. If the cylinder is allowed to oscillate only in
the direction perpendicular to the channel walls, the system will have a pure-resonant
mode.

However, for an array of cylinders, the usual application of the multipole expansion
method leads to complex-valued potentials, and thus the radiation force will be represented
by both added mass and hydrodynamic damping forces. In such a case, it may seem that the
elastically connected cylinder arrays have no pure-resonant modes because of the energy
dissipation due to radiation of waves to infinity. However, using the same technique as
presented by Utsunomiya & Eatock Taylor (1999), we find that we can work with
real-valued velocity potentials which radiate no wave energy to the ends of the channel for
an equally spaced array of cylinders. Combining this idea with the modal analysis tech-
nique, in which we employ “dry-modes” of the periodic mass-spring system as modal
functions, we have obtained real-valued radiation potentials, or only added mass forces as
the radiation forces. The corresponding elastically connected cylinder array, therefore, has
pure-resonant modes. Trapped modes for the corresponding diffraction problem are ob-
tained as the limiting case when the stiffness of the springs has an infinite value.
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2. FORMULATION
2.1. STATEMENT OF THE PROBLEM

Cartesian coordinates (x, y, z) are chosen such that the xy-plane is located on the mean
free surface and the z-axis points upwards. The fluid is contained in a channel, the walls
of which are located at |y|=d and |x| <oo, with the fluid depth being h. The N
circular cylinders having the same radius a and extending vertically throughout the fluid
domain are located along a perpendicular plane to the channel walls. The distances between
the centres of the adjacent cylinders are taken to be 2s and the distances between the
channel walls and the centres of cylinders at both ends of the row are s. Thus the half
channel width d is equal to Ns. The (x, y) coordinates of the axis of each cylinder are
represented by (0, y;), where

yjz_d+(2]_1)s’ J=13299N: (1)
and N polar coordinates (r;, 0;) are defined with their origins at (0, y;) such that
X:erOSGj, y—yjerSIIlQJ, ]:1,2,,N (2)

Figure 1 illustrates the geometrical notation for the three cylinder case (N = 3).

The fluid is assumed to be inviscid and incompressible, and its motion to be time
harmonic with angular frequency w. Further, irrotational fluid motion is assumed so that
a velocity potential @(x, y, z, t) exists. Thus,

D(x, y,z,1) = Re{(x, y, z)e """}, 3)

where ¢(x, y, z) is a complex potential and ¢ is time.
We apply separation of variables in order to factor out z-dependence, so that the
following boundary conditions must be satisfied:

a 2
0L .2) _ 7y b2 onz=0, @
0z g
0
¢(>;,Zy, 2) _ 0 onz=_h 5)
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A y:d
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3 y=—d

Figure 1. Geometrical notation of the problem for the three cylinder case (N = 3).
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where ¢ is the acceleration due to gravity. Then, the potential ¢(x, y, z) can be represented as

05,39 = T @) ©
where the depth dependent eigenfunctions are
filz) = M Y2cos[k,(z + h)], (7)
M, = (1 + sin(2k;h)/2k;h)/2, (8)
and k; satisfies
k tankh + w?*/g = 0. 9)

Here k;, [ > 1 are real and positive, while k, = ik, k real and positive. The functions f;(z)
satisfy the orthogonality relations

1 0
7 J _hfl(z)fm(z) dz = dyp. (10)

After using separation of variables, we can define the following boundary value problem
for waves due to the oscillating cylinders, the velocities of which are defined as Re{i;e ™'}
in the y-direction:

(V2= k)di(x,y) =0 in |yl <d,r; > a, (11)
M:o on |y| =d, |x| < oo, (12)

dy
ad’la(i’y)zo onx =0,y <d|y—yl>a, (13)
$i(x, ) >0 as x| - oo, |y < d, (14)
W:fﬁsm@ onr;=a,—h<z<0, (15)

Jj

where [ =0,1,...,00,j=1,2,..., N.
Multiplying both sides of equation (15) by f;(z) and integrating with respect to z from — h
to 0, it follows from relation (10) that the body boundary condition can be written as

5¢z(”j>0j)

T = FIUJ Sin 01 on rj = aa (16)
where
1 0
F, = EJ fi(z)dz = M V2 sin(k;h)/k;h. (17)
—h

When Dirichlet boundary conditions are applied on the channel walls, equation (12)
should be replaced by

$i(x, y) =0, on |y =d, x| <oo. (18)

2.2. MULTIPOLE EXPANSIONS

The boundary value problem is defined for each of the potentials ¢,(x, y), thus it can
be solved separately for each . In order to solve the boundary value problem for ¢,(x, y),
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1=0,1,...,00, we employ the multipole expansion method. The potential ¢,(x, y) can be
expressed in the following form:

N 0 i . . .
qbl(x’ y) =da Z Z (AJZW;lZZn;ld)JZn;l + B12n+1;lZZH+1;lwén+l;l)s (19)

j=1n=0

where Aé,,;, and B£n+ 14 are the unknown coefficients to be determined, and q’)én;l and
W3, + 14 are the channel multipoles [see Mclver & Bennett (1993), Linton & Mclver (1996)].
The factor Z,, is defined as

Z1 = Ty(ka)/Y,(ka) for [ =0,
= L(ka)/K,(ka) forl=12, .., o0, (20)

where J, and Y, are the Bessel functions of the first and second kind of order , respectively,
and I, and K, are the modified Bessel functions of the first and second kind of order n,
respectively.

The channel multipoles can be expressed as

¢én;l = ?’zn(kﬂ’j)cos (21’101)
+ Z {ag"-Zm;l‘TZm(klrj)cos(zmej) + ﬁén,Zer 1;1J~2m+1(kﬂ'j)Sin[(2m + 1)0,1}, (21)
m=0
lpén+ 1;1 = ?2,,+1(k,rj)sin[(2n —+ l)ej]

+ Z {aéw 1,2m;l~f2m(kzrj)005(2m9j )+ bl 1.2m+ 1;z~sz+ 1(kyrj)sin[(2m 4 1)0,1],

m=0
(22)
where
Y. (kir;) = Y,(kr;) for =0,
=K,(kr;) forl=1,2,..., 0, (23)
T.(kr;) = J,(kr;) for [ =0,
=I,(kr;) forl=1,2,..., . (24)

The coefficients are given in Utsunomiya & Eatock Taylor (1999) for [ = 0, and they are
given below for [ =1, 2,...,00 aSs 0, 2my = %5 2mu1» ELC.

Alternative expressions of the channel multipoles, where the singularity at (0, y;) is
expanded about another point (0, y,), j # p, can be obtained from equations (A.10)-(A.15)
of Linton & Mclver (1996) for I = 0 and applying a similar procedure for/ =1, 2, ..., oo, we
obtain

én;l = Z {(Cj;;l,Zm;l + OCj;:l,2m;l)lem(klVp)cos(zrnep)
m=0

+ (Déi,2m+ 11+ ﬁéi,2m+1;l)-'~2m+ l(klrp)Sin[(zm + 1)011]}’ (25)

wén-%-l;l = Z {(Ejzliw 1.2m1 T aépn-%-1,2m;l)f2m(klrp)cos(2m0p)
0

+ (F]2.I;+ 1,2m+1;1 T b};:ﬁ— 1,2m+ 1;l)f2m+1(klrp)5in[(2m + 1)0,1}
(26)
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with

. Em m+n m—ny
CJZI;,Zm;l = 7[ (_ 1) " Y2n+2m(klep) + (_ 1) Y2n72m(klep)]a (27)

DY it =+ L= (= """ Yapsoms 1 (ki Rjp) + (= 1" "Y1 (ki R;p)1, (28)

; €
ip
Eruviom ==

7"'[(— D" " Yoniame 1 (kiRpp) + (= D" "Vayoame 1 (kiR3p)],  (29)

Fiitomera = — (= 0" "Couiame2(kiRyp) + (= 1" "Yauam (kiR ), (30)

where R;, = 2s|j — p| and the plus sign of =+ should be taken when j < p and the minus
sign of + should be taken when j > p; ¢, =1 for m =0 and ¢,, = 2 for m > 1.
Also, the following coefficients for / > 1 have been derived:

OCJ;:n,Zm;l = 8m(_ 1)m+n
© e~ 2Mteosh [kt(y, — y;)] + cosh[k;t ;
e “eoshlhtly, — yi)l £ coshlkitly, + ¥l o cosh@moydo, (1)
0 sinh (2k;td)

ﬂé’;,zm+ 1;1 = 2( - 1)m+n

J”e_”‘”dsinh [kit(y, — y;)] £ sinh[kt(y, + y;)]

cosh(2nv)cosh[(2m + 1)v]dv,

. sinh(2k,1d)
(32)
aéeerl,Zm;l = &p(— 1)m+n
® e idsinhlk,e(y, — )] +sinh[k £y, +,
e ~sinhlkit(y, =y Esinhlt 0y FID] ko 4 1)]cosh@moyde,
0 sinh(2k;td)
(33)
ba it ame s = 2(— 1"
© — e~ *Mosh[kt(y, —y;)] £cosh[kt(y, + ;)]
0 sinh(2k;td)
x cosh[(2n + 1)v]cosh[(2m + 1)v]dw, (34)

where the plus sign of + corresponds to the Neumann boundary conditions on the channel
walls and the minus sign of + to the Dirichlet boundary conditions, and t = coshv.
In order to evaluate integrals (31)-(34), the following formula has been utilized [1.331 in
Gradshteyn & Ryzhik (1994)]:
21 / 4
coshnx = ) < )sinhz" xcosh" ™ x. (35)
K=o \ 2k
Then the integrals have been numerically calculated for y = sinhv from y = 0 to oo with
t =(1 + %2 by using NAG “dOlamf” subroutine, where a relative error of 107! is
specified as a tolerance limit.
Inserting the above multipoles given by equations (21)-(26) into equation (19), we can
obtain the following expression for the total potential ¢(r,, 0,) in terms of the local polar
coordinates (r,, 0,), p = 1, 2, ..., N, which is valid only in the vicinity of the cylinder p (the
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restriction arising from use of Graf’s addition theorem in the derivation of equations (25)
and (26)):

¢,(r Z A 'Y 2m (k;rp)cos(2m0,) + B, 1;1Y~2m+1 (kyrp)sin[(2m + 1)0,,]
N 0
Z Z 2n ! 052n 2m; lsz(kﬂ” )005(27”01;) + ﬂZn 2m+1; lJ2m+1 (kl” )
j=1n=0
xsin[(2m + 1)0,1) + Bl 1,0@% + 1. 2ms1 Tom(Kir, ) cos(2mb,)
+ b7 1,2m+ 1;1~T2m+ 1(kyry)sin[(2m + 1)0, 1)1} (36)
Here
Al =Z Al B - j
2n;l 2n; 1% 2n;515 2+ 151 = Zon+ 10820+ 150 (37)
and

~Jp Jjp Jjp ;
a2n 2m;l C2n,2m;l + OC2n,2m;l for] # D;

= aén,Zm;l fij = pa (38)

are used for convenience. The coefficients S5 sm 1:1s @%0s1.2m and B%y i i 1a are
similarly defined as above.

Applying the boundary condition given by equation (16) on each of the cylinder surfaces,
p=1,2,...,N, we finally obtain the following systems of equations:

N 0
ASpt + Z Z (A% z&jzli, om;1 + an+1 la2n+1 ams1) =0, (39)

j=1n=0

o0
Bgm+l;l + Z Z (AJZn;IﬁJZI;.Zm+1;l +B12n+1;lb121:1+1,2m+1;l)

j=1n=0
= i, Fydo/kal(ka)  for [ =0
= b, F 0o /kyaly (kya) for 1> 1, (40)

where p=1,2,....N,m=0,1,...,00,and [ =0, 1,..., 00 in both cases. In the numerical

calculations, the infinite systems must be truncated in terms of the Fourier modes, n and m:

the total number of Fourier modes is taken as Np for both odd and even modes.

Furthermore, the infinite set of linear equations must be reduced to a finite set of equations.

The total number of evanescent modes is thus defined by Ny such that [ =0, 1,..., Ng.
We then introduce the following relationships:

ARD, = AD.(2/N) Pcos[(2j — 1)gn/2N] for ¢ =1,2,...,N, (41)
B, = BY)., 1 (2/N)?sin[(2j — 1)qn/2N] forg=1,2, ...,N — 1, (42)
= BY),1.,(1/N)"?sin[(2j — 1)qn/2N] for ¢ = N. (43)

By introducing the above formulae, we can cancel out the propagating wave compo-
nents, which are radiated from each multipole and do not vanish at large |x|, when
k < gn/2d. We can then satisfy the boundary condition specified by equation (14). The
rigorous proof of the above argument can be found in Utsunomiya & Eatock Taylor
(1999).
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At the same time, we express the complex displacement and velocity of the cylinders, v;
and ¢;, in terms of the following modal coordinates:

vj = Z Equ, (44)
Y (45)
=1
where u\” is defined as
u® = (2/N)2sin[(2j — 1)gn/2N] for g =1,2, . —1, (46)
= (1/N)'2sin[(2j — 1)qn/2N] for g = N. (47)

Here, the functions u(q) satisfy the orthogonality relations:
Z uPuP =0 for g #s,

=1 forgq=s. (48)

We then determine the coefficients A%),.; and BY),, ., for unit-amplitude velocity in the
modal coordinate &q. Substituting equations (41)—(43), (46) and (47), and the relationship
v; = ul®, into equations (39) and (40), and then summing up the equations after multiplying
by 51m11ar modal functions to those in equations (41)—(43), we obtain

2 Nro1 l)qn (2p — )gn
A(q) = (q) ~Jp
2mz+N n;o |: anlejZlco N N % 2n, 2m;1
j 2p —1
(2q;:+1 1 Z Z Sln ) ( P )qndlzlzﬂ 2m;l 0, (49)
b1 2N
2 Nl 2j — )gn (2p—1)q7t~
B(q) = (q) ip
om+13 T N n;O |: 2n; szljZl COS N N 2n,2m+ 11
l)qn ) (2p — Dgm ~; }
(q) Jjp
v sm 1 2mt 1
2+llpzljzl N N 2n+1,2m+1;1
= F10mo/kali(ka) for =0,
= F10mo/kialy(kja) forl>1, (50)

wherem =0,1, ... ,Np—1,1=0,1,...,Nyand ¢ = 1,2, ... ,N — 1 in both equations. For
the case of ¢ = N, the above equations are simplified to

A‘;,’,,., =0, (51)
1Nt — 1)qn (2p — 1)qm ~
Bty & | B - .
2m+1;l Nngo 2+11le121 N N 2n+1,2m+1;1
= F;0mo/kali(ka) forl=
= Flémo/klal,l(kla) fOr l > 1 (52)

By solving the above simultaneous linear equations, we can obtain the coefficients A(Zq,f;, and
BY., .1; thus we obtain the total potential from equation (19). Because all of the coefficients

in the system matrix are real, the solutions of A‘Z",), ,and BY, 1.1 also become real. It is to be
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noted that the corresponding homogeneous systems of equations, where right-hand sides of
equations (49)-(52) for I = 0 are set to be zero, determine trapped-mode solutions as their
nontrivial solutions. Trapped-mode solutions around an array of cylinders have been
obtained in such a way by Utsunomiya & Eatock Taylor (1999) in the context of the
diffraction problem.

2.3. ADDED MaAsS

Substituting back equations (39) and (40) into equation (36), and applying the following
Wronskian relationships for the Bessel functions (Linton & Evans 1990)

J(@)Yu(2) — Ya(2)u(2) = — 2/nz, (53)
L(2)K,.(2) — Ki(2)L(2) = 1/z, (54)

we obtain the following simple expressions for the potential ¢,(rp, 0,),,=4:

Np—1 1 2 -
d)l(rp: Hp)rPZa = Z {kJ (k(l) <_ nAgm;l>COS(2m9p)
1 2 94 . .
+ m — EBZm-Fl;l + 0, F10,0 2+ 1 (ka) )sin[(2m + 1)0,]
for I =0, (55)
Np—1 1 = 1 =~
_ = — A5, 2 — (B .
it s = (g om0+ B
+ 0, F10012m+1(kia))sin[(2m + 1)01,]} for [ > 1. (56)

It should be noted that the above radiation potentials are real.
The total potential can thus be expressed by

2

(f)(V rpfa_ Z z (Z)¢(q)( p> )r,,:av (57)

where d)f‘” designates expressions (55) and (56) wherein expressions (41)—(43) are introduced.
The added mass force induced on each cylinder is

N
F = o Re{ 5 nggeim}, (58)
q=1

where

Ng

Z=—pay f fiz)dz f G175, 0))r,—q51n0;d0;
h

I1=0J -

_ (q) Fo o % i3 (@) ()
= — pra*huj |:kaJ'1 (ka)( 1(ka) By, > g klaI’ (kl )(Fl 1(ka) + By ):|
(59)
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The generalized added mass in terms of the modal coordinates ¢, can then be obtained as

N
A=Y s

j=1

=— pna2h|: (FoJ 1 (ka) — EB(‘” I, (ka) + B, )}5
Y

(60)

Thus, the generalized added mass in terms of the modal coordinates becomes a diagonal
matrix. The above expression is consistent with equation (3.46) of Linton & Evans (1992) for
the single-cylinder case.

F,
kaly (ka) Z kzal’ (kz )

2.4. RESONANT MODES FOR AN ELASTICALLY CONNECTED CYLINDER ARRAY

We connect adjacent cylinders by a spring whose spring constant is K/4, and the cylinder at
the ends of the array and the adjacent wall are connected by a spring of stiffness K/2. We
also assume that each cylinder has the same mass M = p,na®h. Using the method of
Faulkner & Hong (1985), we obtain eigenfrequencies and eigenmodes (normal modes) of the
dry system as

, K1 —cos(qn/N)
Pa=N 2
u® = (2/N)"2sin[(2j — 1)gn/2N] forq=1,2,...,N — 1,
= (1/N)Y2sin[(2j — 1)qn/2N] for g = N.

(61)

The above “dry-modes” have already been defined in equations (46) and (47), and used as
the base coordinates for the generalized added mass. Therefore, the equations of motion in
terms of the modal coordinates can be decoupled as

{— 0*(M + 799 + M2} ¢,=0, q=1,2,. (62)

The eigenfrequencies for the full-system including the added-mass effect can thus be
obtained from

— (1 + (p/py)41) + g = 0, (63)
where /% = 7%/pnah. The above equation can be rewritten as
(1)2
A1 = yb<w‘§ — 1) (64)
or
wgs 1
44 — o | 247 -1 65
”’( g kstanhkh ) (65)

where y, = p,/p is the relative density of the cylinders. The resonant frequency w (or the
corresponding wavenumber k) can thus be obtained schematically as a crossing point of the
two graphs for 4% and the right-hand side of the above equations.

3. RESULTS AND DISCUSSION

Table 1 shows the convergence in terms of the truncation parameters, N and Ny, for the
added mass coefficient 2''. For both cases, (a) and (b), Ny = 4 and Nj = 4 give satisfactorily
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TABLE 1

The added mass coefficient A'! for the single cylinder in a channel. (a) ks = 1:0, a/s = 0-5,
h/s = 1-0, and (b) ks = 1-390, a/s = 0-5, h/s = 1-0

Ng Np =1 Np=2 Np =4 Np=38
(@)

0 2-00800 2-00866 2-:00867 2-:00867
1 2:01649 2:01716 2:01716 2:01716
2 201671 2-:01738 2-:01738 2:01738
4 2:01675 2:01741 2:01742 2:01742
8 2:01675 2-:01742 2:01742 2:01742
(b)

0 349-54902 350-17397 350-26314 350-26314
1 349-57658 350-20153 350-29070 350-29070
2 349-57718 350-20213 350-29130 350-29130
4 349-57727 350-20223 350-29139 350-29140
8 349-57728 350-20224 350-29140 350-29141

convergent results. We thus employ Ny = 4 and Ny = 4 in the following calculations, unless
specified explicitly. It should be noted from Table 1(b) that the singular behaviour of the
added mass around the trapped-mode wavenumber (ks = 1-:391314 for this case) is due to
the singular behaviour of the propagating wave component, and the evanescent modes do
not contribute to the singular behaviour.

Figures 2-4 show the added mass coefficient 2! and the determination of the resonant-
mode wavenumbers based on equation (65). As indicated by the solid lines, the added mass
coefficients exhibit singular behaviour around the trapped-mode wavenumber
(ks = 1391314 for the Neumann channel; and ks = 3-071722 for the Dirichlet channel) as
has already been shown by Linton & Evans (1992) for the single cylinder in a channel. The

100

1
I
1
'
1 g .
[} - e
\ .
!
\
1

50 F

- 50 1 N 1
0 0.5 1.0 1.5

ks
Figure 2. The added mass coefficient A'' for the single cylinder in a channel with Neumann boundary

conditions when h/s = 1-0 and a/s = 0-5 (——). The other lines are the right-hand side of equation (65) for y, = 1-0
and wis/g = 10 (- - - ); wis/g = 100 (----); and wis/g = 100-0 (--—-- ).
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Figure 3. The added mass coefficient A'' for the single cylinder in a channel with Neumann boundary
conditions when h/s = 1-0 and a/s = 0-5 (——). The other lines are the right-hand side of equation (65) for y, = 1-0
and w?s/g =10 (- - -); 7, = 50 and w?s/g = 1-0 (----); and 7, = 5:0 and w?s/g = 0-0 (--—-~ ).
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Figure 4. The added mass coefficient A'! for the single cylinder in a channel with Dirichlet boundary conditions
when h/s =10 and a/s = 05 ( ). The other lines are the right-hand side of equation (65) for y, = 1-0 and
w?s/g =10 (- - -); 7, =50 and w}s/g = 1:0 (----); and y, = 50 and w3s/g = 0-0 (-~ ).

lines for the right-hand side of equation (65) for several parameters are also drawn in
the same figures, and the crossing points with the solid line correspond to the resonant-
mode wavenumbers. The resonant-mode frequency w can be obtained from the dispersion
relation.

As the stiffness of the springs becomes large, the resonant-mode wavenumber approaches
the trapped-mode wavenumber, as shown in Figure 2. A pure-resonant mode will be
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observed for the system without springs, as shown in Figure 3, where the graph for y, = 5-0
and w?s/g = 0-0 crosses the solid line in the negative added-mass region. It is obvious that
as the relative density becomes large for the system without springs, resonant-mode
wavenumbers approach the trapped-mode wavenumber. For some combination of para-
meters, multiple resonant states may occur as shown in Figure 3, where the dotted line
crosses the solid line both in the positive and negative added-mass regions. For the case of
Dirichlet boundary conditions on the channel walls (Figure 4), the cut-off wavenumber
becomes 7/s; however the qualitative character is essentially the same as for the Neumann
boundary conditions case (Figure 3).

Resonant-mode wavenumbers are shown in Tables 2 and 3 for arrays of cylinders in
a channel with Neumann and Dirichlet boundary conditions, respectively. In order to check

TABLE 2

Resonant-mode wavenumber ks for elastically connected cylinder arrays in a channel with Neumann
boundary conditions; a/s = 0-5, h/s = 1-0 and 7y, = 1-0. Calculated for Ny = Ny =8 (Ny = Ny =4)

N ¢ wislg =1 w?s/g =10 w%s/g =100  w}s/g =1000  Trapped-mode

1 1 0-681994 1-323659 1-385567 1-390748 1-391313
(0-681994) (1-323659) (1-385567) (1:390748)

2 1 0491416 0-774612 0-779874 0-780239 0-780278
(0-491416) (0-774612) (0-779874) (0-780239)

2 2 0-681998 1-323663 1-385568 1-390748 1-391313
(0-681998) (1-323663) (1-385568) (1:390748)

4 1 0-275827 0-391518 0-392119 0-392160 0-392164
(0:275827) (0-391518) (0-392119) (0:392160)

4 2 0491416 0-774612 0-779874 0-780239 0-780278
(0-491416) (0-774612) (0-779874) (0-780239)

4 3 0-632481 1-127222 1-150102 1-151753 1-151931
(0-632481) (1-127222) (1-150102) (1151753)

4 4 0-682000 1:323665 1-385568 1-390748 1-391313
(0-682000) (1-323665) (1-385568) (1:390748)

TaBLE 3

Resonant-mode wavenumber ks for elastically connected cylinder arrays in a channel with Dirichlet
boundary conditions; a/s = 0-5, h/s = 1-0 and y, = 1-0. Calculated for Ny = Ny = 8 (N = Ng = 4)

N ¢ w?s/g =1 w?s/g =10 w%s/g =100  w%s/g =1000  Trapped-mode

1 1 0-853968 2:927808 3-:064407 3-:071030 3-:071722
(0-853968) (2:927812) (3-064407) (3:071030)

2 1 0-491417 0-774612 0779874 0-780239 0780278
(0-491417) (0774612) (0-779874) (0-780239)

2 2 0-853947 2927402 3-:064405 3-:071030 3-:071722
(0-853947) (2:927407) (3-064405) (3:071030)

4 1 0-275827 0-391518 0392119 0392160 0-392164
(0:275827) (0:391518) (0:392119) (0:392160)

4 2 0-491417 0-774612 0779874 0-780239 0780278
(0-491417) (0774612) (0-779874) (0-780239)

4 3 0-632484 1-127222 1-150102 1-151753 1-151931
(0:632484) (11127222) (1150102) (1151753)

4 4 0-853936 2927191 3-064405 3-:071030 3-:071722

(0-853937) (2:927196) (3-064405) (3-071030)
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the convergence of the results, they have been calculated both for Ny = Ny =8 and
Np = N = 4. As can be seen in Tables 2 and 3, all values are convergent with five figures
accuracy, although most of them are convergent with six figures accuracy.

For the Dirichlet channel, the elastically connected array of cylinders must have free—free
boundary conditions for the existence of pure resonant-modes; that is the springs at both
ends have to be removed. At the same time, the modal coordinates used for the hy-
drodynamic problem must be consistent with the dry-modes for the free-free system
(Utsunomiya & Eatock Taylor 1999).

As is obvious from Tables 2 and 3, as the stiffness of the springs becomes large, the
resonant-mode wavenumbers approach the corresponding trapped-mode wavenumbers.
For the same value of g/N, the same resonant-mode wavenumbers ks are obtained (with five
figures accuracy). This can easily be recognized by considering symmetry; dry-modes for the
periodic system and added-mass for the periodic array of cylinders both exhibit such
symmetry. Equivalency of the added mass (or radiation potentials) for Neumann and
Dirichlet channels is also observed for cases ¢ < N; which is similar to the behaviour of the
trapped-modes for arrays of cylinders in a channel (Utsunomiya & Eatock Taylor 1999;
Porter & Evans 1999). Equipotential contours on the mean free surface (z = 0) for the single
cylinder in a channel are shown in Figure 5. Global potential distributions at large | x| are
similar in (a) and (b); the potentials for both of them become exponentially small as |x|
approaches infinity. However, the potential distributions around the cylinder are different
in (a) and (b). For the case of (a) where the wavenumber is much lower than the

0 02 04 06 08 1.0 12 14 16 1.8 20
(b) x

Figure 5. Equipotential contours on z =0 for the single cylinder in a channel with Neumann boundary
conditions when a/s = 0-5 and h/s = 1-0; (a) ks = 0:681994; and (b) ks = 1-390748.
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trapped-mode wavenumber, the satisfaction of the boundary condition (15) is easily recog-
nized; whereas for the case of (b) where the wavenumber is close to the trapped-mode
wavenumber, the satisfaction of the boundary condition (15) is not obvious. This means that
a small magnitude of oscillation of the cylinder can excite a large wave if the wavenumber is
close to the trapped-mode wavenumber. It is also obvious that Figure 5(b) gives a similar
equipotential contour to the trapped-mode, for which ¢, = 0 is satisfied on the cylinder
surface.

Equipotential contours on the mean free surface (z = 0) for four cylinders in a channel are
shown in Figure 6. Due to the symmetry or anti-symmetry of the potentials with respect to
the xz-plane and the symmetry with respect to the yz-plane, only one-quadrant of the
full-plane is indicated. As is obvious from Figures 6(d) and 5(a), the case for N =g =4 is
equivalent to the case for N = ¢ = 1. A similar observation can be made for N =2,q =1
and N =4, g = 2 (the case of Figure 6(b)).
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Figure 6. Equipotential contours on z = 0 for four cylinders in a channel with Neumann boundary conditions
when a/s = 0-5 and h/s = 1:0: (a) ¢ = 1, ks = 0-275827; (b) g = 2, ks = 0-491416; (c) ¢ = 3, ks = 0-632481; and (d)
q =4, ks = 0:682000.
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Figure 6. continued.
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4. CONCLUSIONS

This paper has examined resonant-modes for an array of elastically connected cylinders
aligned across a wave channel. Nonradiating wave modes for the array of cylinders
oscillating in the direction along the line of the array have been found to exist below the
channel cut-off wavenumbers. The multipole expansion method has been employed to
demonstrate the existence of such nonradiating wave modes, and the technique used by
Utsunomiya & Eatock Taylor (1999) for demonstrating trapped-modes for an array of
cylinders in a channel has been applied here. The wet-modes for the periodic array of
cylinders have been shown to have the same modal shapes as the corresponding dry-modes.

In this paper, we have restricted ourselves to the very limited cases where the arrays of
cylinders have a periodic nature both in the hydrodynamic and mechanical sense; and we
have succeeded to show the existence of pure-resonant modes for such periodic structures. If
we remove such restrictions, e.g. when some cylinders have different radius, some springs
have different spring constants or some cylinders have different mass, the demonstration of
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pure-resonant modes seems impossible, since the system can no more be decoupled and
thus the oscillation mode which radiates energy down the tank will be excited.

One might consider that pure resonant-modes demonstrated in this paper are very
special cases, and no direct engineering application would be available. As shown by
Maniar & Newman (1997), however, trapped-modes in a channel are directly related to the
resonant phenomenon for diffraction around a finite long array of cylinders, which is
relevant for engineering applications. This paper has demonstrated that such resonant
phenomena will occur in some periodic hydro-elastic systems; we need thus to examine in
future research the existence of resonant modes for systems having more realistic configura-
tions, such as a floating airport supported by large number of arrays of truncated cylinders
or a floating bridge spanning a wide channel.

ACKNOWLEDGEMENTS

T. Utsunomiya would like to acknowledge the support of the Kajima foundation during his
one-year visit to the University of Oxford.

REFERENCES

Carian, M., Linton, C. M. & Evans, D. V. 1991 Trapped modes in two-dimensional wave-guides.
Journal of Fluid Mechanics 229, 51-64.

Evans, D. V. & Kuznersov, N. 1998 Trapped modes. In Gravity Waves in Water of Finite Depth (ed.
J. N. Hunt), pp. 127-168. Southampton: Computational Mechanics.

Evans, D. V. & Porter, R. 1997 Near-trapping of waves by circular arrays of vertical cylinders.
Applied Ocean Research 19, 83-99.

Faurkner, M. & Hong, D. P. 1985 Free vibrations of a mono-coupled periodic system. Journal of
Sound and Vibration 99, 29-42.

GRADSHTEYN, L. S. & Ryzhik, I. M. 1994 Tables of Integrals, Series, and Products, 5th edition. London:
Academic Press.

Linton, C. M. & Evans, D. V. 1990 The interaction of waves with arrays of vertical circular cylinders.
Journal of Fluid Mechanics 215, 549-569.

Linton, C. M. & Evans, D. V. 1992 The radiation and scattering of surface waves by a vertical circular
cylinder in a channel. Philosophical Transactions of the Royal Society of London A338, 325-357.

Linton, C. M. & Mclver, P. 1996 The scattering of water waves by an array of circular cylinders in
a channel. Journal of Engineering Mathematics 30, 661-682.

Maniar, H. D. & Newwman, J. N. 1997 Wave diffraction by a long array of cylinders. Journal of Fluid
Mechanics 339, 309-330.

Mclver, P. & BennerT, G. S. 1993 Scattering of water waves by axisymmetric bodies in a channel.
Journal of Engineering Mathematics 27, 1-29.

Newman, J. N. 1998 Hydrodynamic analysis of the Mclver toroid. In 13th International Workshop on
Water Waves and Floating Bodies, Alphen aan den Rijn, The Netherlands.

Porter, R. & Evans, D. V. 1999 Rayleigh-Bloch surface waves along periodic gratings and their
connection with trapped modes in waveguides. Journal of Fluid Mechanics 386, 233-258.
UrseLL, F. 1951 Trapping modes in the theory of surface waves. Proceedings of the Cambridge

Philosophical Society 47, 347-358.

UrsuNomiva, T. & Eatock TayLor, R. 1998 Analogies for resonances in wave diffraction problems. In
13th International Workshop on Water Waves and Floating Bodies, Alphen aan den Rijn, The
Netherlands.

Utsunomiya, T. & Eatock TayLor, R. 1999 Trapped modes around a row of circular cylinders in
a channel. Journal of Fluid Mechanics 386, 259-279.



	1. INTRODUCTION
	2. FORMULATION
	Figure 1

	3. RESULTS AND DISCUSSION
	TABLE 1
	Figure 2
	Figure 3
	Figure 4
	TABLE 2
	TABLE 3
	Figure 5
	Figure 6

	4. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

